S. Boyd

Table of Laplace Transforms

Remember that we consider all functions (signals) as defined only on $t \ge 0$.

General

f(t)	$F(s) = \int_0^\infty f(t) e^{-st} dt$
f + g	F + G
$\alpha f \ (\alpha \in \mathbf{R})$	αF
$\frac{df}{dt}$	sF(s) - f(0)
$\frac{d^kf}{dt^k}$	$s^{k}F(s) - s^{k-1}f(0) - s^{k-2}\frac{df}{dt}(0) - \dots - \frac{d^{k-1}f}{dt^{k-1}}(0)$
$g(t) = \int_0^t f(\tau) \ d\tau$	$G(s) = \frac{F(s)}{s}$
$f(\alpha t), \alpha > 0$	$\frac{1}{lpha}F(s/lpha)$
$e^{at}f(t)$	F(s-a)
tf(t)	$-\frac{dF}{ds}$
$t^k f(t)$	$(-1)^k \frac{d^k F(s)}{ds^k}$
$rac{f(t)}{t}$	$\int_{s}^{\infty} F(s) \ ds$
$g(t) = \begin{cases} 0 & 0 \le t < T \\ f(t-T) & t \ge T \end{cases}, T \ge 0$	$G(s) = e^{-sT}F(s)$

Specific

1	$\frac{1}{s}$
δ	1
$\delta^{(k)}$	s^k
t	$\frac{1}{s^2}$
$\frac{t^k}{k!}, \ k \ge 0$	$\frac{1}{s^{k+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2} = \frac{1/2}{s - j\omega} + \frac{1/2}{s + j\omega}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2} = \frac{1/2j}{s - j\omega} - \frac{1/2j}{s + j\omega}$
$\cos(\omega t + \phi)$	$\frac{s\cos\phi - \omega\sin\phi}{s^2 + \omega^2}$
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2 + \omega^2}$

Notes on the derivative formula at t = 0

The formula $\mathcal{L}(f') = sF(s) - f(0_{-})$ must be interpreted very carefully when f has a discontinuity at t = 0. We'll give two examples of the correct interpretation.

First, suppose that f is the constant 1, and has no discontinuity at t = 0. In other words, f is the constant function with value 1. Then we have f' = 0, and $f(0_-) = 1$ (since there is no jump in f at t = 0). Now let's apply the derivative formula above. We have F(s) = 1/s, so the formula reads

$$\mathcal{L}(f') = 0 = sF(s) - 1$$

which is correct.

Now, let's suppose that g is a unit step function, *i.e.*, g(t) = 1 for t > 0, and g(0) = 0. In contrast to f above, g has a jump at t = 0. In this case, $g' = \delta$, and $g(0_{-}) = 0$. Now let's apply the derivative formula above. We have G(s) = 1/s (exactly the same as F!), so the formula reads

$$\mathcal{L}(g') = 1 = sG(s) - 0$$

which again is correct.

In these two examples the functions f and g are the same except at t = 0, so they have the same Laplace transform. In the first case, f has no jump at t = 0, while in the second case g does. As a result, f' has no impulsive term at t = 0, whereas g does. As long as you keep track of whether your function has, or doesn't have, a jump at t = 0, and apply the formula consistently, everything will work out.