Table of Laplace Transforms

Remember that we consider all functions (signals) as defined only on $t \geq 0$.

General

$f(t)$		$F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$
$f+g$		$F+G$
$\alpha f(\alpha \in \mathbf{R})$		αF
$\frac{d f}{d t}$		$s F(s)-f(0)$
$\frac{d^{k} f}{d t^{k}}$		$s^{k} F(s)-s^{k-1} f(0)-s^{k-2} \frac{d f}{d t}(0)-\cdots-\frac{d^{k-1} f}{d t^{k-1}}(0)$
$g(t)=\int_{0}^{t} f(\tau) d \tau$		$G(s)=\frac{F(s)}{s}$
$f(\alpha t), \alpha>0$		$\frac{1}{\alpha} F(s / \alpha)$
$e^{a t} f(t)$		$F(s-a)$
$t f(t)$		$-\frac{d F}{d s}$
$t^{k} f(t)$		$(-1)^{k} \frac{d^{k} F(s)}{d s^{k}}$
$\frac{f(t)}{t}$		$\int_{s}^{\infty} F(s) d s$
$g(t)=\left\{\begin{array}{l} 0 \\ f(t-T) \end{array}\right.$	$\begin{aligned} & 0 \leq t<T \\ & t \geq T \end{aligned}, T \geq 0$	$G(s)=e^{-s T} F(s)$

Specific

1	$\frac{1}{s}$
δ	1
$\delta^{(k)}$	s^{k}
t	$\frac{1}{s^{2}}$
$\frac{t^{k}}{k!}, k \geq 0$	$\frac{1}{s^{k+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}=\frac{1 / 2}{s-j \omega}+\frac{1 / 2}{s+j \omega}$
$\sin \omega t$	$\frac{s \cos \phi-\omega \sin \phi}{s-j \omega}-\frac{1 / 2 j}{s+j \omega}$
$\cos (\omega t+\phi)$	
$e^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
$e^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$

Notes on the derivative formula at $t=0$

The formula $\mathcal{L}\left(f^{\prime}\right)=s F(s)-f\left(0_{-}\right)$must be interpreted very carefully when f has a discontinuity at $t=0$. We'll give two examples of the correct interpretation.

First, suppose that f is the constant 1 , and has no discontinuity at $t=0$. In other words, f is the constant function with value 1 . Then we have $f^{\prime}=0$, and $f\left(0_{-}\right)=1$ (since there is no jump in f at $t=0$). Now let's apply the derivative formula above. We have $F(s)=1 / s$, so the formula reads

$$
\mathcal{L}\left(f^{\prime}\right)=0=s F(s)-1
$$

which is correct.
Now, let's suppose that g is a unit step function, i.e., $g(t)=1$ for $t>0$, and $g(0)=0$. In contrast to f above, g has a jump at $t=0$. In this case, $g^{\prime}=\delta$, and $g\left(0_{-}\right)=0$. Now let's apply the derivative formula above. We have $G(s)=1 / s$ (exactly the same as $F!$), so the formula reads

$$
\mathcal{L}\left(g^{\prime}\right)=1=s G(s)-0
$$

which again is correct.
In these two examples the functions f and g are the same except at $t=0$, so they have the same Laplace transform. In the first case, f has no jump at $t=0$, while in the second case g does. As a result, f^{\prime} has no impulsive term at $t=0$, whereas g does. As long as you keep track of whether your function has, or doesn't have, a jump at $t=0$, and apply the formula consistently, everything will work out.

